Numerical Modeling of Hydraulic Fracturing in Oil Sands
نویسندگان
چکیده
Hydraulic fracturing is a widely used and e cient technique for enhancing oil extraction from heavy oil sands deposits. Application of this technique has been extended from cemented rocks to uncemented materials, such as oil sands. Models, which have originally been developed for analyzing hydraulic fracturing in rocks, are in general not satisfactory for oil sands. This is due to a high leak-o in oil sands, which causes the mechanism of hydraulic fracturing to be di erent from that for rocks. A thermal hydro-mechanical fracture nite element model is developed, which is able to simulate hydraulic fracturing under isothermal and non-isothermal conditions. Plane strain or axisymmetric hydraulic fracture problems can be simulated by this model and various boundary conditions, such as speci ed pore pressure/ uid ux, speci ed temperature/heat ux, and speci ed loads/traction, can be modeled. The developed model has been veri ed by comparing its results to existing analytical and numerical solutions for thermoelastic consolidation problems. The model has been used to simulate a laboratory experiment of hydraulic fracture propagation in oil sands. The results from the numerical model are in agreement with experimental observations. The numerical model and laboratory experiments both indicate that, for uncemented porous materials, such as sands (as opposed to rocks), a single planar fracture is unlikely to occur and a system of multiple fractures or a fracture zone consisting of interconnected tiny cracks should be expected.
منابع مشابه
Numerical modeling of hydraulic fracturing in carbonate rocks of Bangestan reservoir
Hydraulic fracturing is used in the oil industry in order to increase the index of production and processing in the wells whose efficiencies have been dropped due to a long-term harvest or the rocks around the wells are of low permeability. Since the hydraulic fracturing operation is costly, it is of special importance to the project managers to determine the pressure required for hydraulic fra...
متن کاملNumerical Simulation of Hydraulic Frac-turing Process for an Iranian Gas Field in the Persian Gulf
Most of the Iranian oil and gas wells in the Persian Gulf region are producing through their natural productivity and, in the near future, the use of stimulation methods will be undoubtedly necessary. Hydraulic fracturing as a popular technique can be a stimulation candidate. Due to the absence of adequate research in this field, numerical simulation can be an appropriate method to investigate ...
متن کاملOn the crack propagation modeling of hydraulic fracturing by a hybridized displacement discontinuity/boundary collocation method
Numerical methods such as boundary element and finite element methods are widely used for the stress analysis in solid mechanics. This study presents boundary element method based on the displacement discontinuity formulation to solve general problems of interaction between hydraulic fracturing and discontinuities. The crack tip element and a higher order boundary displacement collocation techn...
متن کاملNumerical investigation of effect of crack geometrical parameters on hydraulic fracturing process of hydrocarbon reservoirs
Hydraulic fracturing (HF), as a stimulation technique in petroleum engineering, has made possible the oil production from reservoirs with very low permeability. The combination of horizontal drilling and multiple HF with various perforation angles has been widely used to stimulate oil reservoirs for economical productions. Despite the wide use of HF, there are still ambiguous aspects that requi...
متن کاملNumerical Evaluation of Hydraulic Fracturing Pressure in a Two-Phase Porous Medium
Hydraulic fracturing is a phenomenon in which cracks propagate through the porous medium due to high pore fluid pressure. Hydraulic fracturing appears in different engineering disciplines either as a destructive phenomenon or as a useful technique. Modeling of this phenomenon in isothermal condition requires analysis of soil deformation, crack and pore fluid pressure interactions. In this paper...
متن کامل